Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.
نویسندگان
چکیده
A simple and effective method was developed using phenol formaldehyde (PF) resins to immobilize hydrous ferric oxide (HFO) onto granular activated carbon (GAC). The resulting sorbent possesses advantages for both the ferric oxide and the GAC, such as a great As-affinity of ferric oxide, large surface area of GAC, and enhanced physical strength. The studies showed that within one hour this sorbent was able to remove 85% of As(V) from water containing an initial As(V) concentration of 1.74 mg l(-1). The As(V) adsorption onto the sorbent was found to follow a pseudo-second order kinetics model. The adsorption isotherms were interpreted in terms of the Langmuir and Freundlich models. The equilibrium data fitted very well to both models. Column tests showed that this sorbent was able to achieve residual concentrations of As(V) in a range of 0.1-2.0 microg l(-1) while continuously treating about 180 bed volume (BV, 130 ml-BV) of arsenate water with an initial As(V) concentration of 1886 microg l(-1) at a filtration rate of 13.5 ml min(-1), i.e., an empty bed contact time (EBCT) of 9.6 min and a gram sorbent contact time (GSCT) of 0.15 min. After passing 635 BV of arsenate water, the exhausted sorbent was then tested by the Toxicity Characteristic Leaching Procedure (TCLP, US EPA Method 1311) test, and classified as non-hazardous for disposal. Hence, this HFO-PF-coated GAC has the capability to remove As(V) from industrial wastewater containing As(V) levels of about 2 mg l(-1).
منابع مشابه
Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite.
In this study, a simplified and effective method was tried to immobilize iron oxide onto a naturally occurring porous diatomite. Experimental resultsfor several physicochemical properties and arsenic edges revealed that iron oxide incorporated into diatomite was amorphous hydrous ferric oxide (HFO). Sorption trends of Fe (25%)-diatomite for both arsenite and arsenate were similar to those of HF...
متن کاملCombined hydrous ferric oxide and quaternary ammonium surfactant tailoring of granular activated carbon for concurrent arsenate and perchlorate removal.
Activated carbon was tailored with both iron and quaternary ammonium surfactants so as to concurrently remove both arsenate and perchlorate from groundwater. The iron (hydr)oxide preferentially removed the arsenate oxyanion but not perchlorate; while the quaternary ammonium preferentially removed the perchlorate oxyanion, but not the arsenate. The co-sorption of two anionic oxyanions via distin...
متن کاملPreloading hydrous ferric oxide into granular activated carbon for arsenic removal.
Arsenic is of concern in water treatment because of its health effects. This research focused on incorporating hydrous ferric oxide (HFO) into granular activated carbon (GAC) for the purpose of arsenic removal. Iron was incorporated into GAC via incipient wetness impregnation and cured at temperatures ranging from 60 to 90 degrees C. X-ray diffractions and arsenic sorption as a function of pH w...
متن کاملA model-based evaluation of sorptive reactivities of hydrous ferric oxide and hematite for U(VI).
The sorption of uranyl onto hydrous ferric oxide (HFO) or hematite was measured by discontinuously titrating the suspensions with uranyl at pH 5.9, 6.8, and 7.8 under Pco2 = 10(-35)atm (sorption isotherms). Batch reactors were used with equilibration times up to 48 days. Sorption of 1 microM uranyl onto HFO was also measured versus pH (sorption edge). A diffuse double layer surface complexation...
متن کاملModeling studies for adsorption of phenol and co-pollutants onto granular activated carbon prepared from olive oil industrial waste
Granular activated carbon (OSAC) which was derived from olive oil industrial solid waste was chemically activated with different concentrations of phosphoric acid. OSAC-materials were evaluated for their ability to remove phenol from aqueous solution in a batch technique. Adsorption isotherms were determined and modeled with five linear Langmuir forms, namely the Freundlich, Elovich, Temkin, Ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental technology
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2008